Allometric scaling and biomechanical behavior of the bone tissue: an experimental intraspecific investigation.
نویسندگان
چکیده
INTRODUCTION Adaptation of bone to different loads has received much attention. This paper examines the consequences of differences in size on bones from the same animal species. METHODS The study was conducted on 32 canine radii. Their geometry, densitometry and mechanical properties were determined and one-way ANOVA was used to analyze their distribution by sex. Bending failure was observed during the mechanical test. The bones were then likened to thin beams and the mechanical parameters of interest were appraised via beam theory. A multiple linear regression model with stepwise analyses was employed to determine which parameters rule the mechanical characteristics. The relationships between the bone mass and the parameters investigated were analyzed by means of a model II regression in order to state how the scaling of the bone characteristics act on its mechanical behavior. RESULTS The linear regression model demonstrated that an animal's mass, its sex and the mineral content and the geometrical properties of its bones almost entirely predict their mechanical behavior. A close fit was found between the experimentally determined and the theoretical slopes of the log regressed allometric equations. The work to failure was found to scale almost linearly with the animal and bone mass and the macroscopical bone material properties were found to be mass invariant. The allometric equations showed that as the animal mass increases, employing proportionally the same amount of tissue, bones get proportionally shorter and proportionally distribute their tissue further from the cross-sectional centroid. CONCLUSIONS Our results suggest that dimensional analysis on the assumption of geometrical self-similarity and mechanical testing according to classic elastic solutions are reasonable in bones tested in accordance to our set up. The bone geometry is the parameter able to curb the energy effects of an animal mass increase. The allometric scaling of the bone length and the cross-sectional layout, without an increase in the amount of material proportionally employed, preserves linear with the animal mass the amount of energy necessary to fracture a bone and restrain the rise of stresses and strains in the cross-section.
منابع مشابه
Biomechanical Comparison Between Bashti Bone Plug Technique and Biodegradable Screw for Fixation of Grafts in Ligament surgery
Background: Ligament reconstruction is a common procedure in orthopedic surgery. Although several popular techniques are currently in use, new methods are proposed for secure fixation of the tendon graft into the bone tunnel. Purposes: We sought to introduce our new technique of Bashti bone plug for fixation of soft tissue graft in anterior cruciate ligament (ACL) reconstruction and to compar...
متن کاملAllometric scaling of intraspecific space use
Allometric scaling relationships enable exploration of animal space-use patterns, yet interspecific studies cannot address many of the underlying mechanisms. We present the first intraspecific study of home range (HR) allometry relative to energetic requirements over several orders of magnitude of body mass, using as a model the predatory fish, pike Esox lucius. Analogous with interspecific stu...
متن کاملIntraspecific Scaling of Rumen-reticulum Fill Might Depend on Dietary Fiber
—Body mass – gut fill scaling relationships affect rate of digestion, foraging behavior, niche differentiation, and trophic interactions. On an intraspecific level, the scalar of this relationship has been reported to be both isoand allometric (,1.0). We hypothesized the scalar of rumen-reticulum fill depends on diet. When the diet has low concentrations of indigestible fiber the scalar should ...
متن کاملAn investigation of tensile strength of Ti6Al4V titanium screw inside femur bone using finite element and experimental tests
The geometric optimization of orthopedic screws can considerably increase their orthopedic efficiency. Due to the high geometric parameters of orthopedic screws, a finite element simulation is an effective tool for analyzing and forecasting the effect of the parameters on the load-bearing capacity of different types of screws and bones. Thus, in the present study, the tensile strength of a typi...
متن کاملEnhancement of Bone Healing by Static Magnetic Field in the Dog: Biomechanical Study
Objective- Although the promotional effects on bone healing of pulsed electromagnetic fields (PEMF)have been well demonstrated, the effects of static magnetic fields (SMF) remained unclear. In this study,effects of SMFs on clinical and biomechanical aspects of bone healing using a canine unstable osteotomygap model were investigated .Design- Prospective descriptive trial.Animals- Fifteen mongre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bone
دوره 40 6 شماره
صفحات -
تاریخ انتشار 2007